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ABSTRACT The protein energy landscape theory is used
to obtain optimal energy functions for protein structure
prediction via simulated annealing. The analysis here takes
advantage of a more complete statistical characterization of
the protein energy landscape and thereby improves on previ-
ous approximations. This schema partially takes into account
correlations in the energy landscape. It also incorporates the
relationships between folding dynamics and characteristic
energy scales that control the collapse of the proteins and
modulate rigidity of short-range interactions. Simulated an-
nealing for the optimal energy functions, which are associative
memory hamiltonians using a database of folding patterns,
generally leads to quantitatively correct structures. In some
cases the algorithm achieves ‘‘creativity,’’ i.e., structures
result that are better than any homolog in the database.

The prediction of protein structure from sequence is a practical
art. As such, although there is much freedom in the detailed way
protein structure prediction can be done, there are necessarily
several constraints in the design of prediction algorithms. Anfin-
sen’s thermodynamic hypothesis (1), inferred from in vitro re-
folding experiments, suggests that protein structures might be
predicted from sequence by minimizing an appropriate free-
energy function. Currently, such functions must be simple in form
so as to allow efficient computational search of the configuration
space. While in the laboratory the folded protein is at a minimum
of the exact free energy, there is no mathematical guarantee that
a simplified energy function exists with good approximate struc-
tures as global minima. Nevertheless the search for such a useful
energy function can be guided by the ‘‘wisdom’’ of the already
huge database of known protein structures and by an under-
standing of the physics and chemistry of protein folding. To satisfy
the Anfinsen hypothesis, an energy function at the very least for
the proteins already in the database, must have global minimum
structures near to the observed ones. This is not the only practical
constraint. For computational efficiency, the global minimum
should be rapidly found by the conformational search algorithm.
Here theory can help. If the search method imitates real folding,
as does simulated annealing by molecular dynamics or Monte
Carlo, the energy landscape theory of folding kinetics can be used
to predict which energy functions allow rapid folding and which
ones permit only very slow folding, i.e., inefficient computational
search (2–4). Several studies have used ideas from the energy
landscape theory to discuss the optimization of energy functions
for the inference of simplified potentials from a database of
known structures (5–9).

In this paper we extend our previous work by showing how
optimized energy functions can be determined that take
advantage of a more complete statistical characterization of

the protein energy landscape throughout its extent. Efficient
folding requires avoiding traps on the energy landscape, so a
fast-folding protein’s landscape must resemble a funnel leading
toward the global minimum (2, 4, 10, 11). In such a landscape,
the time to fold can be approximated as t 5 t0eF‡ykT. Here t0
is the time it takes to explore a local region of configuration
space and sample a configurationally distinct set of minima and
F‡ is the thermodynamic free energy barrier between the set
of unfolded states and the folded configurations. These quan-
tities are related to statistical characteristics of the energy
landscape. For fixed temperature, the thermodynamic barrier,
F‡ strongly decreases with the ground state energy itself,
characterized by the folding temperature Tf below which the
global minimum is thermodynamically stable. The barrier also
depends on other features, e.g., the extent of partial ordering
in the denatured state, whether it is collapsed or not and
whether the microscopic forces are pairwise additive, giving
low barriers, or many-body, giving larger barriers (12). The
reconfiguration time, t0, increases with the ruggedness of the
landscape, quantified by the magnitude of the statistical f luc-
tuations of energy between local minima, DE2 that in turn
depends on the degree of collapse. It also depends on local
rigidity of the chain. t0 depends weakly on the ground state
energy, unless the folding search encounters strong topological
problems, i.e., quasiknots in the chain. In general the recon-
figuration time depends on proximity to the ideal glass tran-
sition temperature Tg at which typically the smaller traps
become kinetically competitive with the global minimum.

When the folding temperature Tf exceeds Tg, folding of
longer chains occurs for Tg , T , Tf, in a time that scales only
polynomially with the chain length, whereas for T ' Tf , Tg,
the longest search time grows exponentially of some power of
the chain length N (13–15). Maximizing the ratio TfyTg leads
to a large temperature range where the energy landscape is
dominated by a folding funnel and where the search procedure
allows the global minimum to be found rapidly.

By using simple statistical mechanical approximations based on
the random energy model, both Tf and Tg for a given set of energy
parameters in protein sequence can be determined. Optimal
parameters then can be found by maximizing the ratio TfyTg
appropriately averaged over a database of known structures. This
yields the most efficient folding energy parameters. Implement-
ing this ‘‘decoding’’ algorithm is an easier extremization problem
than ‘‘forward’’ folding of a random sequence. The mathematical
expression maximized in the simplest decoding is equivalent to
the energy gap criterion later used to design foldable sequences,
assuming the energy function is known (16, 17). As problems,
decoding and design are mathematically ‘‘dual’’ to each other. In
the early attempts at using the optimization decoding strategy, the
ensemble of the denatured states was taken as given and inde-
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pendent of the potential. The statistical ruggedness of the land-
scape controlling the reconfiguration time is not uniform, how-
ever, so the actual denatured states that compete with the ground
state depend on values of other order parameters such as the
degree of collapse. The denatured configuration space sampled
and the appropriate landscape statistics depend on those char-
acteristics of the energy function that control the character of the
thermodynamically occupied states. Folding efficiency therefore
indirectly varies with parameters of the energy function that
influence collapse and the type of secondary structures formed
in the molten globule. To see this, note that expanded configu-
rations have few contacts and little tendency to lead to traps
whereas collapsed configurations have many opportunities to
form opportunistic incorrect contacts. Therefore folding speed
depends also on another characteristic temperature, Tc, defined
as the temperature at which a nonspecific collapsed molten
globule can stably form from the random coil. Increasing the
tendency to collapse has two contradictory effects on folding
speed (15, 18, 19). The thermodynamic free energy barrier is
reduced entropically by collapse whereas the capability of col-
lapsed structures to form bad contacts increases trapping. Klimov
and Thirumalai (20, 21) have emphasized the ratio TfyTc as
playing a role in determining the folding rates—in addition to the
well-established dependence on TfyTg. Like generic collapse,
rigidifying secondary structure in the denatured state has con-
tradictory effects on folding kinetics. Increasing local interactions
and hydrogen bonding raises Tf, thereby lowering the effective
thermodynamic barrier, but again slows reconfigurational mo-
tions by introducing barriers to even local rearrangements (22,
23).

Quantitative treatment of how various landscape characteris-
tics change folding speed is an ongoing activity (24–29). Using
such quantitative theories for optimizing structure-prediction
algorithms may be a task with a long future. Here we continue on
this route by developing a practical approach to optimizing energy
functions that as in earlier work achieves a funnel-like energy
landscape but also takes into account these weaker determinants
of folding speed to some extent. We do this first by producing
quantitative measures of those statistical quantities that charac-
terize the collapse and partial order of the denatured states. We
then use these as additional constraints when optimizing the Tf
over Tg ratio. Specifically, we use Lagrange multipliers constrain-
ing the collapse temperature and short-range sequence rugged-
ness. By doing so we ensure that the attempt to obtain good
discrimination against a set of traps in one part of configuration
space does not lead to an energy surface with a qualitatively
different set of traps. Here we illustrate this practical strategy for
self-consistently optimizing energy functions by finding an opti-
mal associative memory (AM) energy function with a simple
encoding (5, 30, 31). AM energy functions are explicitly based on
a database of known protein structures. They provide a very
flexible way of using database information. They are simulta-
neously closely related to both neural networks that predict
structures from sequence (32) and to the empirical (33–35)
energy functions that use reduced descriptions of the protein. AM
energy functions also can exploit knowledge of homology by
preprocessing the sequence to increase the funnel-like nature of
the landscapes. They are thus a very useful general framework for
discussing a range of structure prediction schemes. The strategies
we illustrate here can be used for more conventional energy
functions as well.

The organization of this paper is as follows: By using a
schematic view of the global density of states we quantify land-
scape features that control folding speed by approximating the
characteristic temperatures (Tf, Tc and Tg.) Combining expres-
sions for the folding and glass transition temperatures in terms of
the energy parameters with additional relations for Tc and for the
rigidity of the short-range structures, we describe the generic
constrained self-consistent optimization strategy. We then briefly
review the AM hamiltonian formulation and ways of including

short-range interactions such as hydrogen bonding. We then
apply the framework to obtain energy functions that lead to fast
folding for a representative set of a-helical proteins. We describe
briefly how the quality of the structure prediction changes with
the various statistical landscape constraints. Finally, we identify
the future prospects for using energy landscape ideas for improv-
ing practical protein structure prediction.

Constrained Self-Consistent Optimization Methodology

Fig. 1 illustrates schematically, in two different ways, some of the
relevant statistics of a protein folding energy landscape. There are
a large number of configurations at the top of the funnel that are
nearly random coils, with few nonlocal contacts. These provide
the bulk of the configurational entropy, Src 5 Nlnn where n is the
number of conformational states per monomer. As contacts are
made the energy on the average decreases, but these contacts may
be native-like and specific or indiscriminate and nonspecific. If
even nonspecific contacts are sufficiently favorable energetically,
a collapsed but fluid set of configurations becomes thermody-
namically relevant and indeed may be a separate phase. In the
lower half of the figure we sketch histograms of the energies of
the configurations. The nonspecific collapse can be a first order
or continuous transition depending on the backbone rigidity. This
is reflected in the detailed shape of the entropy curves. Approx-
imately one kB of entropy per residue would be lost because of
collapse of the chain per residue. The average energy difference
between a collapsed configuration and a random coil is dEc 5
^E&rc 2 ^E&mg. Finally, the folded configurations are well separated
from these disordered configurations by a stability gap from the
molten globule, dEs 5 ^E&mg 2 Ef and by the amount dEs 1 dEc
from the coils. For any energy function both dEs and dEc are easily
computed once a set of disordered globule configurations has

FIG. 1. (A) Schematic diagrams of a protein’s energy landscape and
energetic distribution of its density of states. The landscape is character-
ized by the protein’s energy and entropy. The top of the funnel depicts the
large ensemble of random coil configurations. As the energy decreases so
does the number of configurations until the lowest energy state is reached,
which is the protein’s unique native structure. (B) The density of states
histograms show the same picture but emphasize the relationships
between the characteristic temperatures (Tf, Tc and Tg) and dEs, dEc, and
DE. They depict two possible folding scenarios. (Left) An energy land-
scape in which the protein will first collapse upon cooling and then fold.
(Right) A case that will lead to faster folding for the stability gap is large
enough that the kinetically relevant ruggedness at the transition state will
be smaller and folding will occur directly from a random coil. Because we
want to optimize against even the worst folders, we will use the scenario
at left for our optimization procedure.
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been generated. From a set of globule configurations, one also
can compute the variance of energies or ruggedness DE2. The
ruggedness along with the collapsed states entropy gives an
estimate of the depth of the deepest misfolded trap by using spin
glass theory.

The three energy statistics dEs, dEc, and DE2 lead to the
three characteristic temperatures Tf, Tc, and Tg. Precise values
of these temperatures depend on how entropy decreases with
collapse and ordering but simple estimates can be made that
are monotonically related to the more exact values. If the
histogram is like the left of Fig. 1B, upon cooling the protein
first collapses and then folds. With a larger energy gap direct
folding from the random coils occurs as in the right of Fig. 1B.
The second case will lead to faster folding because the
kinetically relevant ruggedness at the transition state will be
smaller. On the other hand, it is the first case that will apply
for the worst folders of a training set so we will optimize by
using the worst-case scenario that Tf # Tc. This still guarantees
good performance for good folders. In this scenario we can
approximate the folding temperature by equating the free
energy of the globule and the native structure giving Tf 5
dEsySmg. The collapse temperature is approximated by the
first-order transition formula, by using the known entropy loss
of 1kB per residue, Tc 5 dEcyNkB. This not a bad estimate of
where a nonspecific molten globule can form, even when that
transition is not first order. When a nonspecific molten
globule forms, there is a peak in heat capacity near Tc.
Thirumalai defines a temperature Tx as this peak. When Tx

> Tc this is a useful definition but when collapse is specific,
i.e., Tx > Tf, Tx incompletely characterizes the phase diagram
(just as we do not say the sublimation point of dry ice is its
boiling point). Only in the collapsed phase is trapping
kinetically serious. The characteristic temperature for traps
is the glass transition Tg, which within the random energy
approximation, is Tg 5 =DE2y=Smg. Tg is always less than Tc
(15, 18).

By using these formulas, unconstrained maximization of
TfyTg is equivalent to maximizing the ratio dEs/DE. Optimi-
zation is simplest when considering parameters in the energy
function that enter in a linear fashion, E 5 (giji. The gi’s are
the strengths of the interactions terms whereas the ji’s are the
basic forms of the various interactions terms. In the present
study, ji will depend on hydrophobicity and proximity of two
amino acids in a protein sequence, but there are many other
possibilities. Varying the strength parameters g leads to an
optimization problem that can be explicity solved with linear
algebra. The stability gap giving Tf can be written as dEs 5 Ag,
whereas the energetic variance giving Tg can be written DE2 5
g B g. A and g are vectors of dimensionality equal to the
number of interaction types and B is a matrix given by

Ai 5 ^ji&mg 2 jni
[1]

Bij 5 ^jijj&mg 2 ^ji&mg^jj&mg. [2]

These averages depend on the frequencies at which any given
interaction occurs in molten globule and native configurations.
Maximizing the energy ratio Agy=gBg gives the solution that g
5 B21A up to a scalar multiple. (We note performing an average
over training proteins gives rise to the harmonic mean expression
used below in Eq. 4.) The collapse temperature is also a linear
function of the energy parameters g, Tc 5 A9g where A9i 5
^ji&mgyN. If we want to control collapse it is reasonable to impose
a constraint on Tc. This is a linear constraint that gives a new
optimization functional [A 2 l1A9]g 2 l*gBg. The Lagrange
multiplier l1 can be chosen to maintain the ratio of TfyTc close
to 1 while l* sets the energy scale.

In estimating Tg the simple random energy approximation
assumes the molten globule states have little or no native
secondary or tertiary contacts (Q ' 0). Thus to find B we

should subtract out the native contributions to Bij that only give
heterogeneous but still native contacts. We can do this by
redefining the variance in the molten globule distributions B9ij
to reflect only the non-native fluctuations. In other words the
‘‘random’’ part of the energy of any molten globule configu-
ration is defined by projecting out the contribution from its
overlap QN with the native state, E9mg 5 Emg(1 2 QN).

In molecular dynamics polymer chains move by locally over-
coming barriers through backbone f,c isomerizations. If there
are local configurations with too low an energy, they will act as
traps for individual segmental motions. One way to control the
ruggedness of the short-range interactions or rigidity is to also
ensure this local contribution to energetic fluctuations does not
grow large. Imposing this constraint leads to another optimization
functional [A 2 l1A9]g 2 l2gB9sg 2 l*gB9g. The fluctuation
matrix B9s is determined by the local in sequence interactions. The
new Lagrange multiplier l2 then can be selected in each optimi-
zation iteration so that gB9sgygB9g remains constant. Constrained
optimization leads to the simple variational equation

^@l*B9 1 l2B9s#&g 5 ^A 2 l1A9&, [3]

where ^& indicates an average over a set of training proteins.
Proteins do not all have the same global energy landscape

shapes, and therefore when the energy parameters g are
optimized by averaging over the set of training proteins, there
will be a range of TfyTg values. To correct for the variation in
these values, we scaled each training protein’s A and B matrices
by a factor v. The value of v for a given proteins was chosen
to equal its corresponding TgyTf so that the proteins with the
lowest TfyTg values contribute the highest weight to the global
g values. The iterative optimization leads to equation

gn11 5 S 1
M O

m51

M

vm,nB̂D21 S 1
M O

m51

M

vm,nÂD , [4]

where B̂ 5 B9 1 l2B*s, Â 5 A2l1A*, M is the total number of
training proteins, and vm,n is the TgyTf value for the corre-
sponding training protein evaluated with the gn values. During
simulated annealing, B̂, Â, and the vm,n depend on the gn

values, so Eq. 4 iterated until convergence. This procedure is
similar to the harmonic mean average suggested by others (8).
Averaging procedures are far from unique, but results are only
weakly dependent on them.

The minima of the misfolded structures for each training
protein are generated through molecular dynamics simulations
using the gn values. Even misfolded structures are partially
ordered and have a tendency to satisfy any especially large
interaction energy terms. Thus iteratively maximizing the ratio of
dEyDE where the new stability gap is defined as the difference
between the energy of the native fold and the mean energy of the
thermally generated misfolded structures, and the new standard
deviation is over the energy distribution of these structures,
increasing the discrimination between correct and the typically
misfolded structure found by simulated annealing. Because the
misfolded structures themselves depend on the energy function,
the optimal g values for each iteration are calculated with Eq. 4
in which the ^ji&mg values in Eqs. 1 and 2 now denote the average
frequency of occurrence in the current set of misfolded structures.
To smooth convergence, successive over-relaxation was used.
Each round of optimization combines the interaction parameters
from previous optimizations, gn 5 (1 2 «)gn21 1 «gn*. Here we
chose « 5 0.25.

For the first step of optimization, the molten globule states
were generated by translating the target sequences along
scaffolds of unrelated folds (5, 6). In the subsequent rounds the
ensemble of misfolded structures were generated in constant
temperature simulations and constrained to have Q , 0.4.
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AM Potential and Backbone

The AM potential introduced earlier by the Illinois group (5,
31) is based on the correlations between a target protein’s
sequence and the sequence-structure patterns in a set m of
memory proteins. The interaction terms are obtained by
averages over the memory set. One may either average without
using knowledge of precisely which pair of residues in the
target structure may correspond with a given pair in a memory
protein, or a correspondence can be set up by using a memory
preliminary alignment procedure. Here we associate pairs by
the mean-field alignment of the target sequence to the struc-
tural scaffold provided by the memory proteins using an
energy-based threading algorithm developed earlier (7). The
threading procedure places insertions and deletions so that
residues i and j of the the target align to residues i9 and j9 in
the memory protein. The energy parameters g encode simi-
larity (defined by a few amino acid properties Pi) between
residues pair i and j of the target protein and the corresponding
pair in the memory protein. Between nonadjacent residues
only four types of interactions are considered, i.e., between Ca

2 Ca, Ca 2 Cb, Cb 2 Ca, and Cb 2 Cb). The AM potential
encoding these patterns and interactions is given by

VAM 5 2O
m

n O
i,j11

N O
k,l5a,b,ab,ba

go~Pi, Pj, Pi9, Pj9!e2~rki lj2rki9 lj9!
2y2vij,

[5]

where the structural similarity between the target and memory
protein is measured by a gaussian function. rkilj is the distance
between the k and l atoms of residues i and j in the target protein;
rki9lj9 is the distance between k and l atoms of residues i9 and j9 in
the memory protein m; vij is a tolerance specifying how close
pairing distances should match and is equal to (j 2 i)0.3, allowing
a more generous mismatch for residues distant in sequence. We
consider here as in the previous study a simple binary hydropho-
bicity scale with three proximity classifications: short range,
where j 2 i , 5; intermediate or tertiary range where j 2 i . 4
and ri9j9 , 8.0Å; and long range where j 2 i . 4 and ri9j9 . 8.0Å.
We also consider an energy function (EF-15) with a maximal
cut-off distance, j 2 i . 4 and 8.0Å , ri9j9 , 15.0Å.

In addition to the side-chain sequence-dependent interac-
tion, simulated annealing requires specifying a backbone po-
tential that maintains chain connectivity and encourages cor-
rect peptide stereochemistry. The backbone potential is similar
to Friedrichs et al. (31) with an additional hydrogen-bonding
term Vhb and a more realistic Ramachandran potential (Vrama)
to describe the allowed torsional angles of the backbone. The
total potential used in the molecular dynamics simulations is

VT 5 lAM~VAM 1 Vhb! 1 Vrama 1 Vch 1 VexC 1 VexO 1 Vharm,
[6]

where Vch is a chirality potential that biases L-amino acid chirality;
VexC and VexO are excluded volume potentials to prevent non-
bonded carbon and oxygen atoms from coming within 3 Å and 4
Å of each other, respectively. Vharm is a sum of three quadratic
potentials that are used along with a series of SHAKE constraints
shown in Fig. 2 to provide backbone rigidity and assure the
planarity of the peptide bond. The sequence-dependent poten-
tials VAM and the hydrogen bond strength are simultaneously
optimized. Both potentials are rescaled at the beginning of any
annealing run so that the total AM energy of a target protein is
approximately 4N. The scale factors for the other backbone terms
have been empirically chosen (unpublished data).

Results

The energy parameters g were optimized by using a set of
known, well-resolved structures from the a-helical folding
class. The 10 proteins in the training set represent five of the
six general folds characterized by Orengo et al. (36): a metal

rich, orthogonal, EF-hand, a up-down, and globin. After
aligning the 10 training proteins to a representative set of 34
proteins from the topology subgroup of the mostly a class of
proteins (36), the 20 lowest energy alignments for each training
protein were chosen as its memory set. A training protein has,
at most, two structural analogs included in its memory set. If
a training protein had more than two structural analogs, the
two lowest energy structures with the lowest sequence iden-
tities were selected. The structural analogs of the training
proteins also were aligned by using a modified Needleman-
Wunsch (P-NW) alignment algorithm (7). The alignments
between the two different methods were compared, and the
ones with the highest Q-scores were used.

At each iteration, we can characterize the discrimination by
the value of TfyTg 5 dEsy=NDE2 for each training protein.
This averaged ratio is given in Fig. 3 as a function of the
iteration step. The mean energy and variance for the molten
globule ensembles were evaluated from a set of 100 misfolded
structures (Q , 0.4 when compared with the native structure,
and a radius of gyration ranging from 80% to 130% of the
native structure) generated during the molecular dynamics
simulation with the nth iterate energy function.

FIG. 2. A schematic diagram of the constraints and the Vharm and
Vrama potentials on a protein’s backbone. The blue dashed bonds
indicate the pairs of atoms whose distances are kept fixed (shaken).
Harmonic potentials are applied to the atom pairs connected by the
red wavy lines. The potentials are used to maintain the rigidity and
planarity of the peptide backbone.

FIG. 3. Comparison of TfyTg (F) and TfyTc (■) ratios averaged over
the 10 training proteins. The colors represent different iterations of the
EF g values used to calculate the ratios. All of the ratios evaluated with
the g values obtained from the GSW optimization procedure (5) are
shown in black. We calculated the average ratios with respect to each set
of molten globule ensembles. The 21.0 mark represents the molten
globule ensemble generated by translation, the 0.0 mark represents the
ensembles generated with the 0th iterate g values, etc. The plot reveals
that the second iterate g values produce the highest TfyTg on average and
that the TfyTc ratio is being conserved through each round of optimiza-
tion. For the second iterate optimization l1 5 20.1 and l2 5 78.0.
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We see the second iterate g values give the largest discrimi-
nation with respect to any of the molten globule ensembles. The
average TfyTc values shown in the graph verify the constraint on
the collapse transition imposed in Eq. 3. Similar results are seen
for the EF-15 g values (data not shown). Self-consistent optimi-
zation without the constraint gives collapse temperatures ranging
from much greater than Tf to values much smaller than Tx. By
maintaining this ratio close to one the folding and collapse
transitions nearly coincide, which conveniently meshes with an
efficient annealing schedule.

Our previous work (GSW, ref. 5) indicated that kinetic traps
are best avoided when the energy is distributed evenly between
the short-range, tertiary, and long-range interactions. The ratio
between the average short range and tertiary interactions in the
native structures by using the GSW optimization was 0.83. When
unconstrained, optimization leads to a dramatically larger part of
the energy fluctuations coming from the local in sequence term.
The formation of local secondary structure overshadows the
effect of any specific tertiary interaction leading to very inefficient
folding at temperatures sufficient to stabilize the tertiary fold.
When the Lagrange multiplier for short-range ruggedness is
introduced, the short- to long-range ruggedness ratio using these
g values is equal to 1.03.

Eight proteins were annealed by molecular dynamics using the
EF-15(gn 5 3) and EF(gn 5 2) energy parameters. Basically the
annealing protocols of Friedrichs et al. (31) were used. Each run
takes approximately 8–20 hr on a SGI INDY work station. As
shown in Table 1, the predictions were highly structurally similar
to the correct structures for 6 of 8 targets using the EF-15 (gn 5
3) values and 7 of 8 for the EF (gn 5 2) values. The rms deviation
from the x-ray structure is considerably improved over the GSW
optimized g values (5). In fact, we may say the algorithm achieves
some ‘‘creativity’’ for two structures, the bovine calcium-binding
domain (3icb), the results of which are shown in Fig. 4, and
Escherichia coli the gamma delta resolvase (DNA binding do-
main) (1res). In these cases either the Q-score or the rms of the
structures obtained from simulated annealing are better than any
example used to construct the energy function.

The predicted structures of rabbit uteroglobin (1utg), 3icb,
rice embryo cytochrome c (1ccr), and cytochrome c (5pcyR)
indicates that although they essentially reproduce the native
structures, the core elements tend to be slightly overcollapsed
(see Fig. 5). 1utg, a very open structure, is the most overcol-
lapsed. Some part of the overcollapse is probably because of
the assignment of equal radii for all Cb atoms and from
imposing an overidealized backbone potential. In general,
including spatially distant correlations leads to more accurate
predictions of more opened structures such as 1utg. In the case
of 1r69 and 1ccr the end helices have the highest rms deviation.

The poorest result is for the small hydrophobic soybean seed
protein (1hyp), which has four disulfide bonds.

Conclusion

The results of this paper show that self-consistent optimization
augmented by constraints on short-range interactions and col-
lapse temperature can lead to efficient structure prediction
algorithms by using simulated annealing. Although the present

FIG. 4. (A) Comparison of the predicted structure (red), the most
similar memory scaffold (blue), and the native structure of 3icb
(green). (B) rms deviation (based on Ca atoms only) between the
native structure of 3icb and the predicted structure (red) and the rms
between the best memory scaffold and the native structure (blue).
Both representations demonstrate the ‘‘creativity’’ achieved by pre-
diction with this algorithm. The rms deviation plot clearly shows the
areas in which our predicted structure more accurately represents the
native state. The circled values indicate the insertions in the alignment
to the memory scaffold.

Table 1. Results of simulated annealing for eight targets

Protein

Best memory
Predicted

structure EF-15
Predicted

structure EF

NRES Q %I rms*† Q rms* Q rms*

1r69 63 0.89 52.4 0.85 0.73 2.17 0.68 6.08
1utg 70 0.90 55.7 0.78 0.31 8.30 0.53 6.58
3icb 75 0.52 28.0 3.28 0.57 3.51 0.60 3.38
5pal 109 0.89 44.4 0.85 0.62 3.69 0.77 2.33
1ccr 112 0.87 57.4 1.39 0.79 1.96 0.80 2.4
1res 43 0.48 16.3 13.02 0.33 6.84 0.42 7.77
1hyp 75 0.43 22.7 5.46 0.32 8.14 0.29 12.13
5cyt(R) 103 0.75 34.3 1.56 0.32 9.99 0.44 5.94

The Protein Data Bank designation of the protein is listed in column 1. The next four columns list the number of residues
(NRES), the degree of sequence identity of the target with the most homologous structure in the memory set as well as the
Q-score and rms deviation. Columns 6 and 7 give the Q-score and rms deviation for predicted structures using the EF-15 (gn53)
values with respect to the correct structure, and the last two columns given the results for using EF (gn52 values).
*Based on Ca atoms.
†Based on alignment to homolog.
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constrained self-consistent optimization strategy is effective, we
have not optimized the magnitude of the constraints on Tc and
short-range ruggedness. This requires detailed exploration of the
dependence of folding speed on these parameters and is a
nonlinear problem. There is no barrier to carrying out such
studies. Searching through a few constraints is much more
convenient than a complete search through the entire energy
parameter space. Likewise information about how specific struc-
ture patterns influence folding speed can be incorporated into a
structure prediction strategy. Because some interactions are more
important in the folding transition state than others (37–39) and
their specific contributions can be inferred from theory (40),
these interactions can be emphasized in the folding speed opti-
mization strategy. Perhaps the most pressing future development
is the application of the decoding strategies using a finer division
of the amino acids into classes than that used here based on
hydrophobicity. All of these advances should help achieve even
greater efficiency and accuracy in structure prediction.

Appendix

The 10 training proteins (shown in bold) and their corresponding
memory proteins were selected from the Protein Data Bank
(PDB) (41). Their PDB codes are: 1R69: 3CRO(L), 1LMB(3),
1ROP, 1UTG, 1SCT(A), 1ABK, 1MBA, 451C, 1LE4, 1CC5,
149L, 1GDJ, 256B(A), 2SPC(A), 2HHB(A), 2TMV(P),
1COL(A), 1YCC, 2CCY(A), 3ICB; 1UTG: 1CCD, 1CC5, 1HBH,
4CPV, 1ALA, 1ABK, 1ROP, 3ICB, 1LE4, 2WRP(R), 2SPC(A),
2CCY(A), 149L, 1GDJ, 1MBC, 256B(A), 1POD, 1R69, 2SAS,
4FIS; 3ICB: 4CPV, 5TNC, 2SAS, 1ABK, 1ALA, 1MBC, 149L,
1COL(A), 256B(A), 1MBA, 2TMV(P), 1GDJ, 1HBH(A),
1UTG, 1LE4, 451C, 2SPC(A), 1ITH, 2WRP(R), 2CCY(A);
256B(A): 2CCY(A), 1LE4, 1MBC, 1UTG, 1HBH(A), 1GDJ,
2SAS, 2HHB(A), 2SPC(A), 2WRP(R), 1MBA, 149L, 1CC5,

1ALA, 1ROP(A), 2TMV(P), 4CPV, 1POD, 1COL(A),
1SCT(A); 5PAL: 1RRO, 4CPV, 149L, 3ICB, 1MBC, 2SAS,
256B(A), 1MBA, 1ABK, 1ALA, 1GDJ, 2TMV(P), 451C,
2HHB(A), 1POD, 1LE4, 1HBH(A), 1R69, 1UTG, 2SCP(A);
1CCR: 1YCC, 3C2C, 3SPD, 1MBA, 1CC5, 1MBC, 1ALA, 1GDJ,
149L, 1ITH, 2SCP(A), 451C, 1SCT(A), 2WRP(R), 1HDD(A),
2SAS, 2HHB(A), 2SPC(A), 3ICB, 1LE4; 2MHR: 2HMZ(A),
1GDJ, 1POD, 1ALA, 2HHB(A), 1ABK, 1LE4, 1MBC, 1MBA,
3SDP, 2TMV(P), 1SCT(A), 4CPV, 2SPC(A), 149L, 1PRC(L),
1COL(A), 1HBH(A), 3ICB, 2SAS; 1MOH: 1MBA, 1MBC,
1POD, 4CPV, 1LE4, 1YCC, 1ABK, 2SAS, 2CCY(A), 2SCP(A),
256B(A), 1ALA, 1CC5, 2MHZ(A), 2TMV(P), 3ICB, 451C,
1LMB(3), 1PRC(L), 1COL(A); 2MYE: 1MBA, 1GDJ, 1ABK,
1LE4, 149L, 2SAS, 1COL(A), 2SCP(A), 1ALA, 2TMV(P),
1POD, 256B(A), 1YCC, 2WRP(R), 1PRC(L), 2CCY(A),
2SPC(A), 451C, 1CC5, 2MHZ(A); 1GDJ: 1MBC, 1HBH(A),
149L, 2CCY(A), 1ALA, 1ABK, 4CPV, 1POD, 1LE4, 256B(A),
2SAS, 2TMV(P), 2SCP(A), 1COL(A), 1YCC, 1PRC(L), 1CC5,
2MHZ(A), 1LMB(3), 2SPC(A).
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FIG. 5. Superposition of the predicted (blue) and native (yellow)
structures of (A) uteroglobin (1utg), (B) gamma delta resolvase (1res), (C)
rice embryo cytochrome c (1ccr), and (D) cytochrome c (5cyt(R)). All of
the predicted structures show the correct topology for the native structure
although each predicted structure tends to be slightly overcollapsed. The
1utg predicted structure has the largest deviation from its native structure
caused by overcollapse. 1res is one of the two predicted structures that
exhibit ‘‘creativity,’’ i.e., the rms of the predicted structure is higher than
the rms of the best scaffold in its memory set.
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